Mark Scheme

June 2013

4755

Question	Answer	Marks	Guidance	
1	$2x(x^2-5) \equiv (x-2)(Ax^2+Bx+C)+D$	M1	Evidence of comparing coefficients, or multiplying out the RHS, or substituting. May be implied by $A = 2$ or $D = -4$	
	Comparing coefficients of x^3 , $A = 2$	B1		
	Comparing coefficients of x^2 , $B - 2A = 0 \Rightarrow B = 4$	B1		
	Comparing coefficients of x , $C - 2B = -10 \Rightarrow C = -2$	B1		
	Comparing constants, $D - 2C = 0 \Rightarrow D = -4$	B1	Unidentified, max 4 marks.	
		[5]		
2	$z = \frac{3}{2}$ is a root $\Rightarrow (2z - 3)$ is a factor.	M1	Use of factor theorem, accept $2z + 3$, $z \pm \frac{3}{2}$	
	$\Rightarrow (2z-3)(z^2+bz+c) = (2z^3+9z^2+2z-30)$	M1	Attempt to factorise cubic to linear x quadratic	
	Other roots when $z^2 + 6z + 10 = 0$	M1	Compare coefficients to find quadratic (or other valid complete method leading to a quadratic)	
		A1	Correct quadratic	
	$z = \frac{-6 \pm \sqrt{36 - 40}}{2}$	M1	Use of quadratic formula (or other valid method) in their quadratic	
	= -3 + j or -3 - j	A1	oe for both complex roots FT their 3-term quadratic provided roots are complex.	
	OR $\frac{3}{2} + \beta + \gamma = -\frac{9}{2}, \frac{3}{2}\beta\gamma = 15, \text{ or } \frac{3}{2}\beta + \beta\gamma + \frac{3}{2}\gamma = 1$	M1	Two root relations (may use α)	
	$\beta + \gamma = -6, \beta \gamma = 10$	M1	leading to sum and product of unknown roots	
	$z^2 + 6z + 10 = 0,$	M1	and quadratic equation	
		A1	which is correct	
	$z = \frac{-6 \pm \sqrt{36 - 40}}{2}$	M1	Use of quadratic formula (or other valid method) in their quadratic	
	= -3 + j or -3 - j	A1	oe For both complex roots FT their 3-term quadratic provided roots are complex.	
	or roots must be complex, so $a \pm bj$, $2a = -6.9 + b^2 = 10$ z = -3 + j, $z = -3 - j$	M1 A1	SCM0B1 if conjugates not justified	

[6]

Q	uestio	n	Answer	Marks	Guidance	
3	(i)		-2-4 p=0	M1	Any valid row x column leading to p	
			$\Rightarrow p = -\frac{1}{2}$	B1		
				[2]		
3	(ii)		$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{N}^{-1} \begin{pmatrix} -39 \\ 5 \\ 22 \end{pmatrix}$	M1	Attempt to use N ⁻¹	Correct solution by means of simultaneous equations can earn full marks.
			$= \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 3 \\ \frac{-7}{2} & \frac{-1}{2} & -6 \end{pmatrix} \begin{pmatrix} -39 \\ 5 \\ 22 \end{pmatrix}$	M1	Attempt to multiply matrices (implied by 3x1 result)	M1 elimination of one unknown, M1 solution for one unknown
			$= \begin{pmatrix} 5 \\ -7 \end{pmatrix}$	A1	One element correct	A1 one correct, A1 all correct
			$=$ $\begin{pmatrix} -7 \\ 2 \end{pmatrix}$	A1	All 3 correct. FT their <i>p</i>	
				[4]		
4	(i)		$z_2 = 5\left(\cos\frac{\pi}{4} + j\sin\frac{\pi}{4}\right)$ $= \frac{5\sqrt{2}}{2} + \frac{5\sqrt{2}}{2} j$	M1	May be implied	
			$=\frac{5\sqrt{2}}{2}+\frac{5\sqrt{2}}{2}j$	A1	oe (exact numerical form)	
				[2]		

Qı	estion	Answer	Marks	Guidance
4	(ii)	$z_{1} + z_{2} = 3 + \frac{5\sqrt{2}}{2} + \left(-2 + \frac{5\sqrt{2}}{2}\right) \mathbf{j} = 6.54 + 1.54 \mathbf{j}$ $z_{1} - z_{2} = 3 - \frac{5\sqrt{2}}{2} + \left(-2 - \frac{5\sqrt{2}}{2}\right) \mathbf{j} = -0.54 - 5.54 \mathbf{j}$	M1	Attempt to add and subtract z_1 and their z_2 - may be implied by Argand diagram
		$z_1 + z_2$ $z_1 + z_2$	B3	For points cao, -1 each error – dotted lines not needed.
5		$\sum_{r=1}^{n} \frac{1}{(4r-3)(4r+1)} = \frac{1}{4} \sum_{r=1}^{n} \left[\frac{1}{4r-3} - \frac{1}{4r+1} \right]$	M1	For splitting summation into two. Allow missing 1/4
		$= \frac{1}{4} \left[\left(\frac{1}{1} - \frac{1}{5} \right) + \left(\frac{1}{5} - \frac{1}{9} \right) + \dots + \left(\frac{1}{4n - 3} - \frac{1}{4n + 1} \right) \right]$	M1	Write out terms (at least first and last terms in full)
			A1	Allow missing 1/4
		$=\frac{1}{4}\left[1-\frac{1}{4n+1}\right]$	M1	Cancelling inner terms; SC insufficient working shown above,M1M0M1A1 (allow missing 1/4)
		$1 \lceil 4n+1-1 \rceil$ n	A1	Inclusion of 1/4 justified
		$= \frac{1}{4} \left[\frac{4n+1-1}{4n+1} \right] = \frac{n}{4n+1}$	A1	Honestly obtained (AG)
			[6]	

Question	Answer	Marks	Guidance
6	$w = \frac{x}{3} + 1 \Rightarrow 3(w - 1) = x$	M1	
	$x^3 - 5x^2 + 3x - 6 = 0$		
	$\Rightarrow (3(w-1))^{3} - 5(3(w-1))^{2} + 3(3(w-1)) - 6 = 0$	M1	Substituting
		A1	Correct
	$\Rightarrow 27(w^3 - 3w^2 + 3w - 1) - 45(w^2 - 2w + 1) + 9w - 15 = 0$		
	$\Rightarrow 27w^3 - 126w^2 + 180w - 87 = 0$	A3	FT $x = 3w + 3, 3w \pm 1$, -1 each error
	$\Rightarrow 9 w^3 - 42 w^2 + 60 w - 29 = 0$	A1	cao
	OR In original equation $\sum \alpha = 5, \sum \alpha \beta = 3, \alpha \beta \gamma = 6$	M1A1	all correct for A1
	New roots A, B, Γ		
	$\sum A = \frac{\sum \alpha}{3} + 3, \sum AB = \frac{\sum \alpha\beta}{9} + \frac{2}{3}\sum \alpha + 3$		
	$AB\Gamma = \frac{\alpha\beta\gamma}{27} + \frac{\sum \alpha\beta}{9} + \frac{\sum \alpha}{3} + 1$	M1 A3	At least two relations attempted Correct -1 each error FT their 5,3,6
	Fully correct equation	A1 [7]	Cao, accept rational coefficients here

Q	uestio	n Answer	Marks	Guidance
7	(i)	Vertical asymptotes at $x = -2$ and $x = \frac{1}{2}$ occur when	M1	Some evidence of valid reasoning – may be implied
		(bx-1)(x+a) = 0 $\Rightarrow a = 2 \text{ and } b = 2$	A1 A1	
		Horizontal asymptote at $y = \frac{3}{2}$ so when x gets very large,	A1	
		$\frac{cx^2}{(2x-1)(x+2)} \to \frac{3}{2} \Rightarrow c = 3$	[4]	
7	(ii)	Valid reasoning seen	M1	Some evidence of method needed e.g. substitute in 'large' values with result
		Large positive $x, y \to \frac{3}{2}$ from below Large negative $x, y \to \frac{3}{2}$ from above	A1	Both approaches correct (correct b,c)
		$x = -2$ $y = \frac{3}{2}$	B1 B1	LH branch correct RH branch correct Each one carefully drawn.

Question	Answer	Marks	Guidance
7 (iii)	$\frac{3x^2}{(2x-1)(x+2)} = 1 \Rightarrow 3x^2 = (2x-1)(x+2)$ \Rightarrow 0 = (x-2)(x-1)	M1	Or other valid method, to values of x (allow valid solution of inequality)
	$\Rightarrow x = 1 \text{ or } x = 2$	A1	Explicit values of x
	From the graph $\frac{3x}{(2x-1)(x+2)} < 1$		y = 1
	for $-2 < x < \frac{1}{2}$ or $1 < x < 2$	B1 B1	FT their x=1,2 provided >1/2.
	-	[4]	

Q	uestic	on	Answer	Marks	Guidance	
8	(i)		$\sum_{r=1}^{n} [r(r-1)-1] = \sum_{r=1}^{n} r^{2} - \sum_{r=1}^{n} r - n$	M1	Split into separate sums	
			$= \frac{1}{6} n (n+1) (2n+1) - \frac{1}{2} n (n+1) - n$	M1	Use of at least one standard result (ignore 3 rd term)	
			0 2	A1	Correct	
			$= \frac{1}{6} n[(n+1)(2n+1) - 3(n+1) - 6]$	M1	Attempt to factorise. If more than two errors, M0	
			$= \frac{1}{6} n [2 n^2 - 8]$			
			$=\frac{1}{3}n[n^2-4]$	A1	Correct with factor $\frac{1}{3}n$ oe	
			$=\frac{1}{3}n(n+2)(n-2)$		Answer given	
	(ii)		WI 1	[5]		
8	(II)		When $n = 1$, $\sum_{r=1}^{n} [r(r-1)-1] = (1 \times 0) - 1 = -1$ and $\frac{1}{3}n(n+2)(n-2) = \frac{1}{3} \times 1 \times 3 \times -1 = -1$			
			So true for $n = 1$	B1		
			Assume true for $n = k$ $\sum_{r=1}^{k} [r(r-1)-1] = \frac{1}{3}k(k+2)(k-2)$	E1	Or "if true for n=k, then"	
			$\Rightarrow \sum_{r=1}^{k+1} [r(r-1)-1] = \frac{1}{3}k(k+2)(k-2)+(k+1)k-1$	M1*	Add (k + 1)th term to both sides	
			$= \frac{1}{3}k^3 + k^2 - \frac{4}{3}k + k - 1$			
			$=\frac{1}{3}(k^3+3k^2-k-3)$			

Q	uestion	Answer	Marks	Guidance
		$= \frac{1}{3}(k+1)(k^2+2k-3)$	M1dep *	Attempt to factorise a cubic with 4 terms
		$= \frac{1}{3}(k+1)(k+3)(k-1)$	A1	
		$=\frac{1}{3}(k+1)((k+1)+2)((k+1)-2)$		Or = $\frac{1}{3}n(n+2)(n-2)$ where $n = k+1$; or target seen
		But this is the given result with $n = k + 1$ replacing $n = k$. Therefore if the result is true for $n = k$, it is also true for $n = k+1$.	E1	Depends on A1 and first E1
		Since it is true for $n = 1$, it is true for all positive integers, n .	E1 [7]	Depends on B1 and second E1
9	(i)	Q represents a rotation 90 degrees clockwise about the origin	B1 B1	Angle, direction and centre
			[2]	
9	(ii)	$ \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \end{pmatrix} $	M1	
		$P = \begin{pmatrix} -2, 2 \end{pmatrix}$	A1 [2]	Allow both marks for P(-2, 2) www
9	(iii)	$ \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ y \end{pmatrix} $	M1	Or use of a minimum of two points
		l is the line $y = -x$	A1 [2]	Allow both marks for $y = -x$ www
9	(iv)	$ \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ y \end{pmatrix} = \begin{pmatrix} -6 \\ 6 \end{pmatrix} $	M1	Use of a general point or two different points leading to $\begin{pmatrix} -6 \\ 6 \end{pmatrix}$
		n is the line $y = 6$	B1 [2]	y=6; if seen alone M1B1

Q	Question		Answer	Marks	Guidance
9	(v)		$\det \mathbf{M} = 0 \Rightarrow \mathbf{M}$ is singular (or 'no inverse'). The transformation is many to one.	B1 E1 [2]	www Accept area collapses to 0, or other equivalent statements
9	(vi)		$\mathbf{R} = \mathbf{Q} \mathbf{M} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$	M1	Attempt to multiply in correct order
			$ \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ y \end{pmatrix} $		Or argue by rotation of the line $y = -x$
			q is the line $y = x$	A1 [2]	y = x SC B1 following M0