Question		Answer	Marks	Guidance	
1		$2 x\left(x^{2}-5\right) \equiv(x-2)\left(A x^{2}+B x+C\right)+D$ Comparing coefficients of $x^{3}, A=2$ Comparing coefficients of $x^{2}, B-2 A=0 \Rightarrow B=4$ Comparing coefficients of $x, C-2 B=-10 \Rightarrow C=-2$ Comparing constants, $D-2 C=0 \Rightarrow D=-4$	M1 B1 B1 B1 B1 [5]	Evidence of comparing coefficients, or multiplying out the RHS, or substituting. May be implied by $\mathrm{A}=2$ or $\mathrm{D}=-4$ Unidentified, max 4 marks.	
2		$\begin{aligned} & z=\frac{3}{2} \text { is a root } \Rightarrow(2 z-3) \text { is a factor. } \\ & \Rightarrow(2 z-3)\left(z^{2}+b z+c\right)=\left(2 z^{3}+9 z^{2}+2 z-30\right) \end{aligned}$ Other roots when $z^{2}+6 z+10=0$ $\begin{aligned} & z=\frac{-6 \pm \sqrt{36-40}}{2} \\ & =-3+\mathrm{j} \text { or }-3-\mathrm{j} \\ & \text { OR } \frac{3}{2}+\beta+\gamma=-\frac{9}{2}, \frac{3}{2} \beta \gamma=15, \text { or } \frac{3}{2} \beta+\beta \gamma+\frac{3}{2} \gamma=1 \\ & \beta+\gamma=-6, \beta \gamma=10 \\ & z^{2}+6 z+10=0, \\ & z=\frac{-6 \pm \sqrt{36-40}}{2} \\ & =-3+\mathrm{j} \text { or }-3-\mathrm{j} \end{aligned}$ or roots must be complex, so $a \pm b j, 2 a=-6,9+b^{2}=10$ $z=-3+j, z=-3-j$	M1 M1 M1 A1 M1 A1 M1 M1 M1 A1 M1 A1 M1 A1 [6]	Use of factor theorem, accept $2 z+3, z \pm \frac{3}{2}$ Attempt to factorise cubic to linear x quadratic Compare coefficients to find quadratic (or other valid complete method leading to a quadratic) Correct quadratic Use of quadratic formula (or other valid method) in their quadratic oe for both complex roots FT their 3-term quadratic provided roots are complex. Two root relations (may use α) leading to sum and product of unknown roots and quadratic equation which is correct Use of quadratic formula (or other valid method) in their quadratic oe For both complex roots FT their 3-term quadratic provided roots are complex. SCM0B1 if conjugates not justified	

Question		Answer	Marks	Guidance	
3	(i)	$\begin{aligned} & -2-4 p=0 \\ & \Rightarrow p=-\frac{1}{2} \end{aligned}$	M1 B1 [2]	Any valid row x column leading to p	
3	(ii)	$\begin{aligned} & \left(\begin{array}{l} x \\ y \\ z \end{array}\left\|=\mathbf{N}^{-1}\right\| \begin{array}{c} -39 \\ 5 \\ 22 \end{array}\right) \\ & \left.\left.=\left(\begin{array}{ccc} 1 & 0 & 2 \\ 2 & 1 & 3 \\ \frac{-7}{2} & \frac{-1}{2} & -6 \end{array}\right) \right\rvert\, \begin{array}{c} -39 \\ 5 \\ 22 \end{array}\right) \\ & =\left(\begin{array}{c} 5 \\ -7 \\ 2 \end{array}\right) \end{aligned}$	M1 M1 A1 A1 [4]	Attempt to use \mathbf{N}^{-1} Attempt to multiply matrices (implied by 3×1 result) One element correct All 3 correct. FT their p	Correct solution by means of simultaneous equations can earn full marks. M1 elimination of one unknown, M1 solution for one unknown A1 one correct, A1 all correct
4	(i)	$\begin{aligned} & z_{2}=5\left(\cos \frac{\pi}{4}+\mathrm{j} \sin \frac{\pi}{4}\right) \\ & =\frac{5 \sqrt{2}}{2}+\frac{5 \sqrt{2}}{2} \mathrm{j} \end{aligned}$	M1 A1 [2]	May be implied oe (exact numerical form)	

Question		Answer	Marks	Guidance	
4	(ii)	$\begin{aligned} & z_{1}+z_{2}=3+\frac{5 \sqrt{2}}{2}+\left(-2+\frac{5 \sqrt{2}}{2}\right) \mathrm{j}=6.54+1.54 \mathrm{j} \\ & z_{1}-z_{2}=3-\frac{5 \sqrt{2}}{2}+\left(-2-\frac{5 \sqrt{2}}{2}\right) \mathrm{j}=-0.54-5.54 \mathrm{j} \\ & z_{1}-z_{2} \end{aligned}$	M1 B3 [4]	Attempt to add and subtract z_{1} and their z_{2} - may be implied by Argand diagram For points cao, -1 each error - dotted lines not needed.	
5		$\begin{aligned} & \sum_{r=1}^{n} \frac{1}{(4 r-3)(4 r+1)}=\frac{1}{4} \sum_{r=1}^{n}\left[\frac{1}{4 r-3}-\frac{1}{4 r+1}\right] \\ & =\frac{1}{4}\left[\left(\frac{1}{1}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{9}\right)+\ldots+\left(\frac{1}{4 n-3}-\frac{1}{4 n+1}\right)\right] \\ & =\frac{1}{4}\left[1-\frac{1}{4 n+1}\right] \\ & =\frac{1}{4}\left[\frac{4 n+1-1}{4 n+1}\right]=\frac{n}{4 n+1} \end{aligned}$	M1 M1 A1 M1 A1 A1 [6]	For splitting summation into two. Allow missing $1 / 4$ Write out terms (at least first and last terms in full) Allow missing $1 / 4$ Cancelling inner terms; SC insufficient working shown above,M1M0M1A1 (allow missing 1/4) Inclusion of $1 / 4$ justified Honestly obtained (AG)	

Question		Answer	Marks	Guid	
6		$\begin{aligned} & w=\frac{x}{3}+1 \Rightarrow 3(w-1)=x \\ & x^{3}-5 x^{2}+3 x-6=0 \\ & \Rightarrow(3(w-1))^{3}-5(3(w-1))^{2}+3(3(w-1))-6=0 \\ & \Rightarrow 27\left(w^{3}-3 w^{2}+3 w-1\right)-45\left(w^{2}-2 w+1\right)+9 w-15=0 \\ & \Rightarrow 27 w^{3}-126 w^{2}+180 w-87=0 \\ & \Rightarrow 9 w^{3}-42 w^{2}+60 w-29=0 \end{aligned}$ OR In original equation $\sum \alpha=5, \sum \alpha \beta=3, \alpha \beta \gamma=6$ New roots A, B, Г $\begin{aligned} & \sum \mathrm{A}=\frac{\sum \alpha}{3}+3, \sum \mathrm{AB}=\frac{\sum \alpha \beta}{9}+\frac{2}{3} \sum \alpha+3 \\ & \mathrm{AB} \Gamma=\frac{\alpha \beta \gamma}{27}+\frac{\sum \alpha \beta}{9}+\frac{\sum \alpha}{3}+1 \end{aligned}$ Fully correct equation		Substituting Correct FT $x=3 w+3,3 w \pm 1,-1$ each error cao all correct for A1 At least two relations attempted Correct -1 each error FT their 5,3,6 Cao, accept rational coefficients here	

Question		Answer	Marks	Guidance	
7	(i)	Vertical asymptotes at $x=-2$ and $x=\frac{1}{2}$ occur when $\begin{aligned} & (b x-1)(x+a)=0 \\ & \Rightarrow a=2 \text { and } b=2 \end{aligned}$ Horizontal asymptote at $y=\frac{3}{2}$ so when x gets very large, $\frac{c x^{2}}{(2 x-1)(x+2)} \rightarrow \frac{3}{2} \Rightarrow c=3$	M1 A1 A1 A1 [4]	Some evidence of valid reasoning - may be implied	
7	(ii)	Valid reasoning seen Large positive $x, y \rightarrow \frac{3}{2}$ from below Large negative $x, y \rightarrow \frac{3}{2}$ from above	M1 A1 B1 B1 [4]	Some evidence of method needed e.g. substitute in 'large' values with result Both approaches correct (correct b,c) LH branch correct RH branch correct Each one carefully drawn.	

Question		Answer	Marks	Guidance	
8	(i)	$\begin{aligned} & \sum_{r=1}^{n}[r(r-1)-1]=\sum_{r=1}^{n} r^{2}-\sum_{r=1}^{n} r-n \\ & =\frac{1}{6} n(n+1)(2 n+1)-\frac{1}{2} n(n+1)-n \\ & =\frac{1}{6} n[(n+1)(2 n+1)-3(n+1)-6] \\ & =\frac{1}{6} n\left[2 n^{2}-8\right] \\ & =\frac{1}{3} n\left[n^{2}-4\right] \\ & =\frac{1}{3} n(n+2)(n-2) \end{aligned}$	M1 M1 A1 M1 A1 [5]	Split into separate sums Use of at least one standard result (ignore $3^{\text {rd }}$ term) Correct Attempt to factorise. If more than two errors, M0 Correct with factor $\frac{1}{3} n$ oe Answer given	
8	(ii)	When $n=1$, $\begin{aligned} & \sum_{r=1}^{n}[r(r-1)-1]=(1 \times 0)-1=-1 \\ & \text { and } \frac{1}{3} n(n+2)(n-2)=\frac{1}{3} \times 1 \times 3 \times-1=-1 \end{aligned}$ So true for $n=1$ Assume true for $n=k$ $\begin{aligned} & \sum_{r=1}^{k}[r(r-1)-1]=\frac{1}{3} k(k+2)(k-2) \\ & \Rightarrow \sum_{r=1}^{k+1}[r(r-1)-1]=\frac{1}{3} k(k+2)(k-2)+(k+1) k-1 \\ & =\frac{1}{3} k^{3}+k^{2}-\frac{4}{3} k+k-1 \\ & =\frac{1}{3}\left(k^{3}+3 k^{2}-k-3\right) \end{aligned}$	B1 E1 M1*	Or "if true for $\mathrm{n}=\mathrm{k}$, then..." Add $(\mathrm{k}+1)$ th term to both sides	

Question		Answer	Marks	Guidance	
		$\begin{aligned} & =\frac{1}{3}(k+1)\left(k^{2}+2 k-3\right) \\ & =\frac{1}{3}(k+1)(k+3)(k-1) \\ & =\frac{1}{3}(k+1)((k+1)+2)((k+1)-2) \end{aligned}$ But this is the given result with $n=k+1$ replacing $n=k$. Therefore if the result is true for $n=k$, it is also true for $n=$ $k+1$. Since it is true for $n=1$, it is true for all positive integers, n.	M1dep A1 E1 E1 [7]	Attempt to factorise a cubic with 4 terms Or $=\frac{1}{3} n(n+2)(n-2)$ where $n=k+1$; or target seen Depends on A1 and first E1 Depends on B1 and second E1	
9	(i)	Q represents a rotation 90 degrees clockwise about the origin	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	Angle, direction and centre	
9	(ii)	$\begin{aligned} & \left(\begin{array}{cc} 0 & -1 \\ 0 & 1 \end{array}\right)\binom{x}{2}=\binom{-2}{2} \\ & \mathrm{P}=(-2,2) \end{aligned}$	M1 A1 [2]	Allow both marks for $\mathrm{P}(-2,2)$ www	
9	(iii)	$\left(\begin{array}{cc} 0 & -1 \\ 0 & 1 \end{array}\right)\binom{x}{y}=\binom{-y}{y}$ l is the line $y=-x$	M1 A1 [2]	Or use of a minimum of two points Allow both marks for $y=-x$ www	
9	(iv)	$\left(\begin{array}{cc} 0 & -1 \\ 0 & 1 \end{array}\right)\binom{x}{y}=\binom{-y}{y}=\binom{-6}{6}$ n is the line $y=6$	M1 B1 [2]	Use of a general point or two different points leading to $\binom{-6}{6}$ $y=6$; if seen alone M1B1	

Question		Answer $\operatorname{det} \mathbf{M}=0 \Rightarrow \mathbf{M}$ is singular (or 'no inverse'). The transformation is many to one.	Marks B1 E1 $[2]$	Guidance	
9	(v)			www Accept area collapses to 0 , or other equivalent statements	
9	(vi)	$\begin{aligned} & \mathbf{R}=\mathbf{Q} \mathbf{M}=\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)\left(\begin{array}{cc} 0 & -1 \\ 0 & 1 \end{array}\right)=\left(\begin{array}{ll} 0 & 1 \\ 0 & 1 \end{array}\right) \\ & \left(\begin{array}{ll} 0 & 1 \\ 0 & 1 \end{array}\right)\binom{x}{y}=\binom{y}{y} \end{aligned}$ q is the line $y=x$	M1 A1 [2]	Attempt to multiply in correct order Or argue by rotation of the line $y=-x$ $y=x \quad$ SC B1 following M0	

